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Wigner density of a rigid rotator
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We show that the Wigner density of the rigid rotator, in an appropriate, i.e., four-dimensional, phase space,
is positive. This result holds in the ground staf qtatg, and also in the thermal mixture state at all finite
temperatures. We discuss the implications of our result for the description of angular momentum in quantum
mechanics; in particular, we reexamine, in the light of this new evidence, the suggestion made by Einstein and
Stern[Ann. Phys.40, 551 (1913] that there is a nontrivial distribution of angular momentum in $hstate.
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PACS numbd(s): 05.30—d, 03.65.Bz

[. INTRODUCTION statistical mechanics of the rigid rotator in the Wigner rep-
resentation is close to the classical statistical mechanics in
The Wigner density of a quantum-mechanical, one-the phase space.
particle, zero-spin system, whose wave functioWig), is A further consequence of the reduced Wigner description
(h=1) is that it enables us to reformulate the argument of Einstein
and Stern[3], who saw, in the specific-heat curve of di-
atomic molecules, evidence in favor of a “hypothesis of mo-
lecular agitation at the absolute zero of temperature.” Ein-
stein and Sterfi3] obtained a remarkable agreement with the
The Wigner density is a pseudoprobability density; its inte-experimental data for the specific heat of diatomic mol-
gral over the momentum is the position density and viceecules, using a simple model that included zero point fluc-
versa, but, as a consequence of a general thepte?h it  tuations in the rotational energy. This agreement has been
can be a positive function only for the very special caseconsidered accidental by Millof#], but we shall show that
whenV is Gaussian. So, according to these results, the onlit can be qualitatively explained in the Wigner representa-
guantum-mechanical pure states which might be interpretetion.
as probability distributions over the classical phase space are We shall see that the joint Wigner densi(#) of the
the squeezed coherent states of linear oscillators. three angular-momentum components, (5, ,7,), in the
We shall show, in this paper, that the family may be en-state/'=0 , is not a & function, but instead has dispersion
larged, by a modest amount, to include a state of at least one
nonlinear system, namely, the rigid rotator. The wave func- 2 2. o
tion of this Ztate is not G);ussian?J but we show that it never- (et my+ ’72>°:f Vo(m) n°dy=3/2. ®)
theless escapes the consequences of the above-mentioned
theorem. This is because the nonpositivityéfppears only ~ This apparently paradoxical result is explained by a general
in the density of theadial position and momentum. These property of the Wigner density that, for any observable
coordinates, in the classically rigid case, would both beA(#) in the stateV,
sharply defined, which would violate the Heisenberg rela-
tion. Actua!ly a state withr concentrated near some fixed <‘1’|5Al‘1’>=f A(7)Vy(7)d37, (4)
value,r g, will have a rather large range of values fgr, but
we shall see that theeducedWigner density

W(p,r)= w-3f T*(r+R)¥(r—R)e?PRI’R. (1)

where S denotes that the andp operators ofA have been

o o symmetrically ordered. The modern argumédi against
W(Py.Pg, 0, ¢)= o dr| dpW(p.r) (2 Einstein and Stern is that, in the ground stag,
is well defined for all pure quantum-mechanical states of the L0y=L,l0)=L,|0)=0, ©)

rigid rotator. Furthermore, its positivity properties are the

same as those of the linear oscillator; it is positive in the?nd hence

ground state and, although it is not positive for the excited Ay an Ao

state, it is positive for all thermal mixtures. We see that the (O[Ly+Ly+L;[0)=0. (6)
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But it is easy to prove that r-rR [rXR|
i L p-R=pr——+(pscosy+pysiny) —2— (19
SLZ=S(xpy~yp?=L+1/2, (7)
and
and similarly forL, andL,, which establishes the connec-
tion with Eq. (3). r-R u?-p?
o

This indicates that the zero point oscillationslgf, L, =" (16)
andL, have the same character as those of the electromag-
netic field, for which a single mode has the field energy IFXR| [u?+0? u2—p?2\ 2]1/2
h=1), = —-1-
=1 e (T) B
A agn
€=waa, ® 5o that
wherea is the photon annihilation operator in that mode. The © 24
mean square vacuum fluctuation efmay be represented f e”PRd pr=— du—v)
either by the normal ordering o
. . u’
Aet=(0]:€%|0)—(0|€|0)?=0 9 ><ex;{2|(p,9cospL Pusing) \/ 7z —1/.
or by the symmetric ordering (18

A€3=(0|Se?|0)—(0|Se|0)2= w?/2. (10) Hence

Symmetrical ordering provides a picture closer to the cIaSS|Wn/(p0 Dg.0,¢)= _gf drf duf dy'uy? ()P,
[} y n

cal one, and it has been advocated by Daliberdl. [5].
However, the choice of a particular ordering to calculate ex-
pectation values is usually considered a matter of tate 2r?—u? . u’
X ;2 exp 2i ncosy’ r—z—l ,
Il. THE REDUCED WIGNER DENSITY OF A (19
SPHERICALLY SYMMETRIC SYSTEM

The energy eigenfunctions of a spherically symmetric where we have put

system are P,
2_ A2 17 r

i —p0+pt andy'=y—tan .

V(1) =0 (DY s 6,8), (11) f Po

whereY ,,, are normalized spherical harmonics and Now put

% u2 02
frzwﬁ/(r)drzl. (12 x=\/r—2—lcos(’ andy=\/r—2—1sinx’, (21
0

Putting Eq.(11) into Eq. (1) gives us a Wigner density then, using the normalization conditi¢h2), we obtain
W, m(p,r), but we immediately transfer attention to the

mixed state, obtained by averaging over the magnetic quan- WPy Dy 0.) = f dxf dy exp(2i 77;03
1
(1+x? +vy9) 12

tum number,
/ 1_X2_y2
— 1
WoPD=577 2 Won(Pr) (13 XP/(_z_fo il (2

Note that this reduced Wigner density does not depend at
all on the radial wave function; it is the same for all spheri-
o 1 cally symmetric systems and depends only on the total an-
Wi (p.1r)= mf Yn(U)hn ()P, gular momentum quantum numbgr The integrations in Eq.

(22) may be done by introducing the generating function of
P, in the form

1-t2
/

for which the spherical harmonic addition theorem gives

X

u-v .
E) ezm'RUUdUdvd)(, (14

whereu=r+R, v=r—R, and y is the angle between the
plane containings andv and the meridional plane through

r. 1 (1+12)372
Now put p;,= pcosed; then (1+ )2

Nl W

2

+t2| , (23

=
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which gives, on substituting into E¢R2), ity problem, and exercise that freedom, which we have in

classical statistical mechanics, to change the variables in

1 -z
y Sonr o c phase space.
E (2/+ 17w, 2m2(1+2) ex% 2771+z 29 As a first step we shall change from the variables

(p01p¢!0!¢) to (p&;ptr101¢)1 Where

and hence
(—1)/ Py= P ,COSED. (32
=0 - 27
W/(Pg:Py,6,¢) 2m2(2/+1) LA4me™™" 29 | terms of these variables we have
whereL , are the Laguerre polynomials. (—1)” B .
W/(pe,Ptrﬁ,(ﬁ):me 271 ,(47)sing,
11l. ANGULAR MOMENTUM AS A CLASSICAL (33
RANDOM VARIABLE
. . . : . where
The reduced Wigner density, obtained in the preceding
section, is a function of the single variable n=p2+ p2 (34)
[ try
= ‘/pfz;+ ptzf: \/p§+ pfbcoseéa, (26 with the normalization
which may be identified as the total angular momentum of
the system. As may have been anticipated from the well f W, (Pg,Py. 0, ¢)dp,dp,dode=1. (35
known case of the linear oscillator, this density is positive

only for the case/’=0, but in view of the Hudson-Soto-
Claverie theoreni1,2], it is a pleasant surprise, even in this
case, to find that it is positive.

Now, using the pseudoprobabilities, in the form of
their generating functiofi24), it is straightforward to obtain
the expectation value of powers gf that is,

<n”>/=fw/(pa,p¢,0,d>)n”dpadp¢d0d¢- (27

We obtain

’ ~ (1+z)n+1
> 27+ (g, =2 ”(n+1)!m, (28
and, in particular,
2/°+2/+1
O VS I @9
(9?),=/%+/+3l2. (30)

As we remarked in the Introduction, the second of these
results may be obtained directly from the operator algebraThis is the joint *
but the first, as far as we know, is new, and can be obtaine
only from the Wigner density. The two results together
would, if the moments were true moments, give a “disper-

sion” for # of

An2=()—(n)e= g @
TN TN TR 427+ 1)

which would indicate a distribution of; just sufficiently

concentrated to distinguish, from w,, ;. Such a descrip-

This shows uniform distribution with respect to the solid
angle sifdéde, and, at the same time, isotropy with respect
to the meridional angular momentupy and the transverse
angular momentunp, .

Now we introduce the Cartesian components
(7%, my,m,) of angular momentum, so that
n=Nmet 05+ 75, (36)

and we see that, after averaging over the surface of the
sphere, the isotropy ovempg,py) translates into one over
(7x,my,m,). We deduce that the reduced density with re-
spect toy is

(_ 1)/e727]
VA 1x, 0y, 1) = mb(”ﬂ]% (37
with the normalization
f VA 7]x’77yr771)d77xd77yd772: 1. (38

probability” density over the variables

gorresponding to the noncommuting observables
(Lx.Ly.,L,). In accordance with a general theorem on

Wigner densities, it satisfies the relation

/7

57T, (/MISEEEL |/ m)

N f V(e mysm) minymdmdnydy,. (39

tion is not altogether reliable, however, since a closer exami-

nation ofw, reveals that its “negative-probability” oscilla-
tions extend well beyond the region defined by+3
*An,.

IV. THE THERMODYNAMICS OF THE RIGID ROTATOR

In the case of the rigid rotator, with its phase space re-

Nevertheless, we shall anticipate the results of the nexstricted by the rigidity, theeducedWigner density of Sec.
section which, to a large extent, resolve the pseudoprobabill, that is,
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(-1
W,(Pg,Py .0, )= ml—/(4ﬂ)9_2”. (40

n=\pj+ pjcoseds, (42)

becomes thédull Wigner density corresponding to the angu-
lar momentum quantum numbgt We note the close formal
resemblance to the Wigner density of the one-dimensional
linear oscillator in itsnth excited state

n

) Ln(47)e”27, (42

Wn(p,X)=(

7=(2mw) Y(p2+m?w?x?). (43

The problem of the nonpositivity div,(p,x) has been ex-
tensively discussed, both in its thermodynafi¢and spec-
troscopic[8] aspects. It has been shown that all laboratory
states of the linear oscillator, both equilibrium and nonequi-
librium, are, in fact, mixtures, represented by positive
Wigner densities, of pure states. This result was established
by representing the interaction of the oscillator with the elec-
tromagnetic field as a classical stochastic process, known as
stochastic electrodynami¢9,10]. But such a representation
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FIG. 1. The curve$(#;T) are presented foF =0 (top curve,

is known to fail in the case of nonlinear systefrid]; it

T=1.25 (middle curve, and T=2.0 (bottom curve. Around

follows that we cannot carry out a comprehensive treatment=1.25 the curve is changing from exponenti&p curve to
of the rigid rotator, as we were able to do with the linearBoltzmann(bottom curve decay.

oscillator. Nevertheless, we shall show that all gwilib-

rium statesof the rigid rotator, corresponding to thermal The functionG, and hencew, is positive for all relevant
mixtures of the densities ., have positive Wigner densities. values of its arguments. This is a consequence of the follow-

The Wigner density at temperatur€ [in units of
72(21k) "1 is

G(nT) F(yT
W(p6=p¢101¢1T):47:27;(T): (2:]1_2) (Sawr (44)

where
- /(/+1)
G(nM=22 (—1)/L/(477)6XD( —2p——=—|,
(45)
andZ(T) is the partition function
- A(/+1
Z(M=2, (2/+ 1)ex;{ - ¥) (46)
7=o T
The alternating partial sums of the are defined as
Sh(X)=Lo(X) =L1(X) +La(X) = - - +(=1)"Ly(x).
(47)
Then Eq.(45) may be written as
- n(n+1
G(7T)=22 Sy(4me exp( N T )
n=

l{ (n+1)(n+2)
—exp —

A

ing Lemma, which is proved in the Appendix.

Lemma: The polynomials ;&) are all positive for
x>0. All of the thermal properties of the system will now be
obtainable from the momentsote not pseudomomentef

77,

<77”>T:JW(po,p¢,0,¢>;T)n”dp(,dp¢d0d¢
2
:ﬁf 7"1G(7; T)d7y. (49)

In practice only the even moments are required, and these
will all be identical, following the remarks made in the pre-
ceding section, with the standard expressions obtained by
differentiating the partition function. We have computed the
function F(#;T), as defined by Eq44), and the result is
displayed in Fig. 1. In Fig. 2 we exhibit the density
nF(7;T).

We remark that the asymptotic form &f 7;T) (see the
Appendix for details for large T is, provided7?<T,

F(m;T)~(2T) e 7T, (50)

which is the Boltzmann distribution for eassicalrigid ro-
tator. We think it is noteworthy that this asymptotic behavior
appears naturally, without any arguments about coarse grain-
ing or grouping of energy levels.
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0.20 : ; : T .
G(n;T)=w‘1f2 ¢ dssese? Mas
7;+ie

- J(/+1
X >, exr{—%—(Z/H)is .
0.15 | /=
(A2)
The sum may be converted, by the Poisson sum formula, to
obtain
F
e G(n;,T)= \ﬁex L Jgﬂf dssee? 7tas
' T AT) ) _7
2— €
_ n —(s—mr)zT
0.05 Xn;w( 1)%
T 1) [ot+ie _ )
= — i iptars—s“T
\/;exp(4_|_> fiooﬂedsse(se2 .
0.00 : : : (A3)
0.0 1.0 2.0 3.0 4.0 5.0
Ul We now obtain a uniform asymptotic expansionzinfor

large T, by displacing the contour of EqA3) to pass
FIG. 2. The curvesnF(#%;T) are presented foT=0 (top  through the saddle point at=i ¢, where
curve, T=1.25(middle curve, andT=2.0 (bottom curve.

¢costtp=5T L. (A4)
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Z(T)=2f0 nG(n; T)dn. (A6)

APPENDIX
Substituting Eq(A3) in Eq. (A6) we get, after one integra-

For T not too large the series representatiddS) and tion by parts,
(46), are an efficient means for the computation of &),
but for largeT the sum must be taken to increasingly large \/ﬁ 1| [etie
/, therefore it can be computed only in fast computers. De- Z(M)= ?ex aT J_Mie
pending on the computer available, it then becomes more (A7)
efficient to use an asymptotic series.

The basis for this series is an integral representation fof he power series expansion
L, obtained from the generating functié24), namely,

sexp(—s?T)cosesds

1 ) 7 4
scoses=1+ =s°+ —=s"+

6 . ..
65 "360° "15120° (A8)
WL A4 oy 1J dz ) 1-z
(=)L (4n)e =om mex 207 then leads to
_ L (Frie Z(T)~T 1+£T‘1+£T‘2+iT_3+--~ . (A9)
=5,) %, ses 3 15 315
—E le

. _ The Lemma in Sec. IV may be proved by considering the
X exp2in tars—(2/+1)is]ds. generating function o, , which follows from thatofL ,, in
(A1)  the form

Then, substituting in Eq45), and taking into account that ¢ Ax2) 2= f 2 A10
L, as defined above, is zero for negatie nZO Sz =T x2)1% (A10)
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where where
2z%
f(x,z)=(1—2%)  Y%exp ——|. All [Ha(x)1?
(%,2)=( ) 1+z (ALD) an(x)= nn|2n ' (A13)
Then, by constructing a linear, first-order partial differential
equation forf(x,z), it is possible to show that andH,(x) are Hermite polynomials. Now, since the power
w series forf(x,z) has positive coefficients for all rea, it
> ;
f(x,2)= z a,(x)2", (A12) follows that[f(x,z)] has this same property, and hence the
n=0 Lemma is proved.
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