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Wigner density of a rigid rotator
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We show that the Wigner density of the rigid rotator, in an appropriate, i.e., four-dimensional, phase space,
is positive. This result holds in the ground state (S state!, and also in the thermal mixture state at all finite
temperatures. We discuss the implications of our result for the description of angular momentum in quantum
mechanics; in particular, we reexamine, in the light of this new evidence, the suggestion made by Einstein and
Stern@Ann. Phys.40, 551 ~1913!# that there is a nontrivial distribution of angular momentum in theS state.
@S1063-651X~97!11703-2#

PACS number~s!: 05.30.2d, 03.65.Bz
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I. INTRODUCTION

The Wigner density of a quantum-mechanical, on
particle, zero-spin system, whose wave function isC(r …, is
(\51)

W~p,r !5p23E C* ~r1R!C~r2R!e2ip–Rd3R. ~1!

The Wigner density is a pseudoprobability density; its in
gral over the momentum is the position density and v
versa, but, as a consequence of a general theorem@1,2#, it
can be a positive function only for the very special ca
whenC is Gaussian. So, according to these results, the o
quantum-mechanical pure states which might be interpre
as probability distributions over the classical phase space
the squeezed coherent states of linear oscillators.

We shall show, in this paper, that the family may be e
larged, by a modest amount, to include a state of at least
nonlinear system, namely, the rigid rotator. The wave fu
tion of this state is not Gaussian, but we show that it nev
theless escapes the consequences of the above-ment
theorem. This is because the nonpositivity ofW appears only
in the density of theradial position and momentum. Thes
coordinates, in the classically rigid case, would both
sharply defined, which would violate the Heisenberg re
tion. Actually a state withr concentrated near some fixe
value,r 0, will have a rather large range of values forpr , but
we shall see that thereducedWigner density

w~pu ,pf ,u,f!5E
0

`

drE
2`

`

dprW~p,r ! ~2!

is well defined for all pure quantum-mechanical states of
rigid rotator. Furthermore, its positivity properties are t
same as those of the linear oscillator; it is positive in
ground state and, although it is not positive for the exci
state, it is positive for all thermal mixtures. We see that
551063-651X/97/55~3!/2551~6!/$10.00
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statistical mechanics of the rigid rotator in the Wigner re
resentation is close to the classical statistical mechanic
the phase space.

A further consequence of the reduced Wigner descript
is that it enables us to reformulate the argument of Eins
and Stern@3#, who saw, in the specific-heat curve of d
atomic molecules, evidence in favor of a ‘‘hypothesis of m
lecular agitation at the absolute zero of temperature.’’ E
stein and Stern@3# obtained a remarkable agreement with t
experimental data for the specific heat of diatomic m
ecules, using a simple model that included zero point fl
tuations in the rotational energy. This agreement has b
considered accidental by Milloni@4#, but we shall show that
it can be qualitatively explained in the Wigner represen
tion.

We shall see that the joint Wigner densityV0(h) of the
three angular-momentum components (hx ,hy ,hz), in the
statel 50 , is not a d function, but instead has dispersion

^hx
21hy

21hz
2&05E V0~h!h2d3h53/2. ~3!

This apparently paradoxical result is explained by a gen
property of the Wigner density that, for any observab
A(h) in the stateC,

^CuSÂuC&5E A~h!VC~h!d3h, ~4!

whereS denotes that ther andp operators ofÂ have been
symmetrically ordered. The modern argument@4# against
Einstein and Stern is that, in the ground stateu0&,

L̂xu0&5L̂yu0&5L̂zu0&50, ~5!

and hence

^0uL̂x
21L̂y

21L̂z
2u0&50. ~6!
2551 © 1997 The American Physical Society
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But it is easy to prove that

SL̂z
25S~ x̂p̂y2 ŷp̂x!

25L̂z
211/2, ~7!

and similarly forLx andLy , which establishes the conne
tion with Eq. ~3!.

This indicates that the zero point oscillations ofLx , Ly ,
andLz have the same character as those of the electrom
netic field, for which a single mode has the field ener
(\51),

ê5vâ†â, ~8!

whereâ is the photon annihilation operator in that mode. T
mean square vacuum fluctuation ofe may be represente
eitherby the normal ordering

DeN
25^0u: ê2:u0&2^0u êu0&250 ~9!

or by the symmetric ordering

DeS
25^0uSê2u0&2^0uSêu0&25v2/2. ~10!

Symmetrical ordering provides a picture closer to the cla
cal one, and it has been advocated by Dalibardet al. @5#.
However, the choice of a particular ordering to calculate
pectation values is usually considered a matter of taste@6#.

II. THE REDUCED WIGNER DENSITY OF A
SPHERICALLY SYMMETRIC SYSTEM

The energy eigenfunctions of a spherically symme
system are

Cnl m~r !5cnl ~r !Yl m~u,f!, ~11!

whereYl m are normalized spherical harmonics and

E
0

`

r 2cnl
2 ~r !dr51. ~12!

Putting Eq. ~11! into Eq. ~1! gives us a Wigner density
Wnl m(p,r ), but we immediately transfer attention to th
mixed state, obtained by averaging over the magnetic qu
tum number,

W̄nl ~p,r !5
1

2l 11 (
m52l

l

Wnl m~p,r !, ~13!

for which the spherical harmonic addition theorem gives

W̄nl ~p,r !5
1

8p4r E cnl ~u!cnl ~v !Pl

3S u–vuv De2ip–Ruvdudvdx, ~14!

whereu5r1R, v5r2R, and x is the angle between th
plane containingu and v and the meridional plane throug
r .

Now put ptr5pfcosecu; then
g-
y

i-

-

c

n-

p–R5pr
r–R

r
1~pucosx1ptrsinx!

ur3Ru
r 2

~15!

and

r–R

r
5
u22v2

4r
, ~16!

ur3Ru
r 2

5Fu21v2

2r 2
212S u22v2

4r 2 D 2G1/2, ~17!

so that

E
2`

`

e2ip–Rdpr5
2pr

u
d~u2v !

3expF2i ~pucosx1ptrsinx!Au2

r 2
21G .

~18!

Hence

wnl ~pu ,pf ,u,f!5
1

4p3E
0

`

drE
r

`

duE
0

2p

dx8ucnl
2 ~u!Pl

3S 2r 22u2

u2 D expF2ihcosx8Au2

r 2
21G ,

~19!

where we have put

h25pu
21ptr

2 andx85x2tan21
ptr
pu
. ~20!

Now put

x5Au2

r 2
21cosx8 andy5Au2

r 2
21sinx8, ~21!

then, using the normalization condition~12!, we obtain

wl ~pu ,pf ,u,f!5
1

4p3E
2`

`

dxE
2`

`

dy
exp~2ihx!

~11x21y2!3/2

3Pl S 12x22y2

11x21y2D . ~22!

Note that this reduced Wigner density does not depen
all on the radial wave function; it is the same for all sphe
cally symmetric systems and depends only on the total
gular momentum quantum numberl . The integrations in Eq.
~22! may be done by introducing the generating function
Pl in the form

( ~2l 11!zl Pl S 12t2

11t2D
5

12z

~11z!2
~11t2!3/2F S 12z

11zD
2

1t2G2
3
2
, ~23!
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which gives, on substituting into Eq.~22!,

( ~2l 11!zl wl 5
1

2p2~11z!
expS 22h

12z

11zD , ~24!

and hence

wl ~pu ,pf ,u,f!5
~21! l

2p2~2l 11!
L l ~4h!e22h, ~25!

whereL l are the Laguerre polynomials.

III. ANGULAR MOMENTUM AS A CLASSICAL
RANDOM VARIABLE

The reduced Wigner density, obtained in the preced
section, is a function of the single variable

h5Apu
21ptr

25Apu
21pf

2 cosec2u, ~26!

which may be identified as the total angular momentum
the system. As may have been anticipated from the w
known case of the linear oscillator, this density is posit
only for the casel 50, but in view of the Hudson-Soto
Claverie theorem@1,2#, it is a pleasant surprise, even in th
case, to find that it is positive.

Now, using the pseudoprobabilitieswl in the form of
their generating function~24!, it is straightforward to obtain
the expectation value of powers ofh, that is,

^hn& l 5E wl ~pu ,pf ,u,f!hndpudpfdudf. ~27!

We obtain

( ~2l 11!^hn& l z
l 522n~n11!!

~11z!n11

~12z!n12 , ~28!

and, in particular,

^h& l 5
2l 212l 11

2l 11
, ~29!

^h2& l 5l 21l 13/2. ~30!

As we remarked in the Introduction, the second of the
results may be obtained directly from the operator algeb
but the first, as far as we know, is new, and can be obtai
only from the Wigner density. The two results togeth
would, if the moments were true moments, give a ‘‘disp
sion’’ for h of

Dh l
25^h2& l 2^h& l

25
3

4
2

1

4~2l 11!2
, ~31!

which would indicate a distribution ofh just sufficiently
concentrated to distinguishwl from wl 11. Such a descrip-
tion is not altogether reliable, however, since a closer exa
nation ofwl reveals that its ‘‘negative-probability’’ oscilla
tions extend well beyond the region defined byl 1 1

2

6Dh l .
Nevertheless, we shall anticipate the results of the n

section which, to a large extent, resolve the pseudoproba
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ity problem, and exercise that freedom, which we have
classical statistical mechanics, to change the variable
phase space.

As a first step we shall change from the variab
(pu ,pf ,u,f) to (pu ,ptr ,u,f), where

ptr5pfcosecu. ~32!

In terms of these variables we have

wl ~pu ,ptr ,u,f!5
~21! l

2p2~2l 11!
e22hL l ~4h!sinu,

~33!

where

h5Apu
21ptr

2, ~34!

with the normalization

E wl ~pu ,ptr ,u,f!dpudptrdudf51. ~35!

This shows uniform distribution with respect to the so
angle sinududf, and, at the same time, isotropy with respe
to the meridional angular momentumpu and the transverse
angular momentumptr .

Now we introduce the Cartesian componen
(hx ,hy ,hz) of angular momentum, so that

h5Ahx
21hy

21hz
2, ~36!

and we see that, after averaging over the surface of
sphere, the isotropy over (pu ,ptr) translates into one ove
(hx ,hy ,hz). We deduce that the reduced density with r
spect toh is

Vl ~hx ,hy ,hz!5
~21! l e22h

~2l 11!ph
L l ~4h!, ~37!

with the normalization

E Vl ~hx ,hy ,hz!dhxdhydhz51. ~38!

This is the joint ‘‘probability’’ density over the variable
corresponding to the noncommuting observab
(L̂x ,L̂y ,L̂z). In accordance with a general theorem
Wigner densities, it satisfies the relation

1

2l 11 (
m52l

l

^l muS~ L̂x
pL̂y

qL̂z
r !ul m&

5E Vl ~hx ,hy ,hz!hx
phy

qhz
rdhxdhydhz . ~39!

IV. THE THERMODYNAMICS OF THE RIGID ROTATOR

In the case of the rigid rotator, with its phase space
stricted by the rigidity, thereducedWigner density of Sec.
II, that is,
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wl ~pu ,pf ,u,f!5
~21! l

2p2~2l 11!
L l ~4h!e22h, ~40!

h5Apu
21pf

2 cosec2u, ~41!

becomes thefull Wigner density corresponding to the ang
lar momentum quantum numberl . We note the close forma
resemblance to the Wigner density of the one-dimensio
linear oscillator in itsnth excited state

Wn~p,x!5
~21!n

p
Ln~4h!e22h, ~42!

h5~2mv!21~p21m2v2x2!. ~43!

The problem of the nonpositivity ofWn(p,x) has been ex-
tensively discussed, both in its thermodynamic@7# and spec-
troscopic@8# aspects. It has been shown that all laborat
states of the linear oscillator, both equilibrium and noneq
librium, are, in fact, mixtures, represented by positi
Wigner densities, of pure states. This result was establis
by representing the interaction of the oscillator with the el
tromagnetic field as a classical stochastic process, know
stochastic electrodynamics@9,10#. But such a representatio
is known to fail in the case of nonlinear systems@11#; it
follows that we cannot carry out a comprehensive treatm
of the rigid rotator, as we were able to do with the line
oscillator. Nevertheless, we shall show that all theequilib-
rium statesof the rigid rotator, corresponding to therm
mixtures of the densitieswl , have positive Wigner densities

The Wigner density at temperatureT @in units of
\2(2Ik)21# is

w~pu ,pf ,u,f;T!5
G~h;T!

4p2Z~T!
5
F~h;T!

2p2 ~say!, ~44!

where

G~h;T!52(
l 50

`

~21! l L l ~4h!expS 22h2
l ~ l 11!

T D ,
~45!

andZ(T) is the partition function

Z~T!5 (
l 50

`

~2l 11!expS 2
l ~ l 11!

T D . ~46!

The alternating partial sums of theL l are defined as

Sn~x!5L0~x!2L1~x!1L2~x!2•••1~21!nLn~x!.
~47!

Then Eq.~45! may be written as

G~h;T!52(
n50

`

Sn~4h!e22hFexpS 2
n~n11!

T D
2expS 2

~n11!~n12!

T D G . ~48!
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The functionG, and hencew, is positive for all relevant
values of its arguments. This is a consequence of the foll
ing Lemma, which is proved in the Appendix.

Lemma: The polynomials Sn(x) are all positive for
x.0. All of the thermal properties of the system will now b
obtainable from the moments~note not pseudomoments! of
h,

^hn&T5E w~pu ,pf ,u,f;T!hndpudpfdudf

5
2

Z~T!
E hn11G~h;T!dh. ~49!

In practice only the even moments are required, and th
will all be identical, following the remarks made in the pr
ceding section, with the standard expressions obtained
differentiating the partition function. We have computed t
function F(h;T), as defined by Eq.~44!, and the result is
displayed in Fig. 1. In Fig. 2 we exhibit the densi
hF(h;T).

We remark that the asymptotic form ofF(h;T) ~see the
Appendix for details! for largeT is, providedh2!T,

F~h;T!;~2T!21e2h2/T, ~50!

which is the Boltzmann distribution for aclassicalrigid ro-
tator. We think it is noteworthy that this asymptotic behav
appears naturally, without any arguments about coarse gr
ing or grouping of energy levels.

FIG. 1. The curvesF(h;T) are presented forT50 ~top curve!,
T51.25 ~middle curve!, and T52.0 ~bottom curve!. Around
T51.25 the curve is changing from exponential~top curve! to
Boltzmann~bottom curve! decay.
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APPENDIX

For T not too large the series representations~45! and
~46!, are an efficient means for the computation of Eq.~44!,
but for largeT the sum must be taken to increasingly lar
l , therefore it can be computed only in fast computers. D
pending on the computer available, it then becomes m
efficient to use an asymptotic series.

The basis for this series is an integral representation
L l obtained from the generating function~24!, namely,

~21! l L l ~4h!e22h5
1

2p i E dz

zl 11~11z!
expS 22h

12z

11zD
5

1

2pE2
p
2 1 i e

p
2 1 i e

secs

3exp@2ih tans2~2l 11!is#ds.

~A1!

Then, substituting in Eq.~45!, and taking into account tha
L l , as defined above, is zero for negativel ,

FIG. 2. The curveshF(h;T) are presented forT50 ~top
curve!, T51.25 ~middle curve!, andT52.0 ~bottom curve!.
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G~h;T!5p21E
2

p
2 1 i e

p
2 1 i e

dssecse2ihtans

3 (
l 52`

`

expF2
l ~ l 11!

T
2~2l 11!isG .

~A2!

The sum may be converted, by the Poisson sum formula
obtain

G~h;T!5AT

p
expS 1

4TD E
2

p
2 1 i e

p
2 1 i e

dssecse2ihtans

3 (
n52`

`

~21!ne2~s2np!2T

5AT

p
expS 1

4TD E
2`1 i e

`1 i e

dssecse2ihtans2s2T.

~A3!

We now obtain a uniform asymptotic expansion inh, for
large T, by displacing the contour of Eq.~A3! to pass
through the saddle point ats5 if, where

fcosh2f5hT21. ~A4!

We then obtain, by the method of steepest descents,

G~h;T!;sechf~112ftanhf!21/2

3exp@T~f222fsinhfcoshf!#. ~A5!

The asymptotic representation ofZ(T) follows particu-
larly simply from the relation

Z~T!52E
0

`

hG~h;T!dh. ~A6!

Substituting Eq.~A3! in Eq. ~A6! we get, after one integra
tion by parts,

Z~T!5AT3

p
expS 1

4TD E
2`1 i e

`1 i e

sexp~2s2T!cosecsds.

~A7!

The power series expansion

scosecs511
1

6
s21

7

360
s41

31

15 120
s61••• ~A8!

then leads to

Z~T!;TS 11
1

3
T211

1

15
T221

4

315
T231••• D . ~A9!

The Lemma in Sec. IV may be proved by considering t
generating function ofSn , which follows from that ofL l , in
the form

(
n50

`

Sn~4x
2!zn5@ f ~x,z!#2, ~A10!
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where

f ~x,z!5~12z2!21/2expF2zx211zG . ~A11!

Then, by constructing a linear, first-order partial different
equation forf (x,z), it is possible to show that

f ~x,z!5 (
n50

`

an~x!zn, ~A12!
,

y

,

l

where

an~x!5
@Hn~x!#2

n!2n
, ~A13!

andHn(x) are Hermite polynomials. Now, since the pow
series for f (x,z) has positive coefficients for all realx, it
follows that@ f (x,z)#2 has this same property, and hence t
Lemma is proved.
-
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